GROWTH OF BLUE-GREEN ALGAE IN THE MANUKAU (NEW ZEALAND) OXIDATION PONDS—II. EXPERIMENTAL STUDIES ON ALGAL INTERACTION

W. F. VINCENT* and W. B. SILVESTER†

Botany Department, University of Auckland, Auckland, New Zealand

(Received 14 December 1978)

Abstract—An experimental approach was made to the interaction between the blue-green algae Anabaena and Microcystis and the normal oxidation pond dominant Chlorella. Methods employed were dialysis tubing, mixed culture with assay by in vivo absorbance, and by interaction tubes in which the algae were separated by a filter membrane. No dialysable inhibitor material in the oxidation ponds was detected with in situ experiments. In mixed culture Chlorella inhibits Anabaena only when starting concentration of Chlorella is high and that of Anabaena is low. On the other hand at all concentrations Anabaena quickly dominated Chlorella. These results were confirmed in interaction tubes where the algae were separated and the results extended to show Microcystis also inhibits Chlorella growth. Filtrate experiments indicate that both Microcystis and Anabaena produce a filterable substance capable of suppressing Chlorella growth but that Chlorella does not exert any influence on blue-green algae by way of soluble materials.

INTRODUCTION

In the previous study (Vincent & Silvester, 1979) it was shown that growth of blue-green algae in a well established sewage oxidation pond was strongly inhibited by high resident populations of green algae. Growth of blue-green algae was only possible during periods when green algal density was low and pond conditions of temperature and pH were sub-optimal for green algal growth. The simple interpretation of changing physical conditions of the ponds as the major factor in controlling algal dominance is strongly suggestive, but leaves open the whole problem of the complex interaction phenomena that exist in such a system.

A variety of approaches have been made to the study of algal interactions, both in the field and laboratory. In mixed culture experiments interactions between the components are difficult to analyse and different approaches have been made to resolving the interaction mechanisms. Vance (1965) separated the interacting species by a sintered glass filter welded into a glass tube. This approach was extended by Kroes (1971, 1972, 1973) who used a continuous flow system with in-line filters. These and other workers have emphasised the importance of extracellular products in algal interaction and competition.

It is well established that healthy algal cells liberate a significant proportion of total carbon fixed into their surrounding environment (Fogg, 1971). The diverse range of organic compounds released include carbohydrates, amino acids, organic-phosphates and vitamins, many of which produce effects of possible ecological importance such as growth inhibition, metabolic stimulation or induction of sexual development. For example, several strains of *Chlorella*, the genus dominating the Manukau ponds throughout most of the year, are known to produce inhibitory compounds termed 'chlorellins' (Scult, 1964). On the other hand Jacob (1961) and Vance (1965) have shown that blue-green algae are capable of suppressing a wide range of eucaryote algae.

Interactions between blue-green algae and Chlorella were investigated in the present study using mixed cultures, interaction tubes, and by filtrates to determine the possible competitive advantages of each group.

MATERIALS AND METHODS

Blue-green algal cultures Anabaena sp. (local isolate) and Microcystis aeruginosa (Cambridge culture collection) were grown and maintained on ASM inorganic nutrient medium (Gorham et al., 1964). To assess the possible effect of low molecular weight chemicals on growth, polythene or dialysis bags containing algae and nutrient were suspended in the oxidation ponds and assayed after 4 days by cell count.

Algal interaction between Anabaena and Chlorella was investigated in mixed culture by growing each alga singly or in combination at various starting concentrations 5×10^3 , 5×10^4 and 5×10^5 cells per ml. These were shaken under continuous fluorescent light (2500 lux) and constant temperature 28°C for 9 days and assayed by 'in vivo absorbance' and by final cell count.

In vivo absorbance

The relative abundance of *Chlorella* and *Anabaena* in mixed culture was measured by making use of their different pigment composition. An opalescent glass screen

^{*} Present address: Ecology Division, DSIR, P.O. Box 415, Taupo, New Zealand.

[†] Department of Biological Sciences, University of Waikato, Hamilton, New Zealand.

Fig. 1. Absorption spectra of suspended whole cells of Anabaena (continuous line) and Chorella (broken line). Spectra were run in a Beckman DB spectrophotometer using a pair of etched glass screens between cell suspension and phototube.

between cell suspension and phototube served to reduce the light scattering effect of the cell suspension (Shibata, 1958) and made it possible to separate the two absorption spectra as shown in Fig. 1. Based on the major differences in spectra the two components in mixed culture could be separated by an equation derived as follows:

Absorbance values at 675 nm and 615 nm can be summarized as follows:

Culture	Absorbance		
	615 nm	675 nm	
Chlorella	A'615	A'675	
Anabaena Combined culture	A ₆₁₅	A″675	
(Chlorella and Anabaena)	A615	A675	

$$\begin{array}{ll} A_{615} = A_{615}' + A_{615}'' & (1) \\ A_{675} = A_{675}' + A_{675}'' & (2) \end{array}$$

From equations (1) and (2)

$$\frac{A_{615}}{A_{675}} = \frac{A_{615}'}{A_{675}' + A_{675}''} + \frac{A_{615}''}{A_{675}' + A_{675}''}.$$

Dividing through by
$$\frac{A'_{675}}{A'_{675}}$$
 or $\frac{A''_{675}}{A''_{675}}$,
 $\frac{A_{615}}{A_{675}} = \frac{\frac{A'_{615}}{A'_{675}}}{\frac{A'_{675}}{A'_{675}} + \frac{A''_{675}}{A''_{675}} + \frac{A''_{615}}{\frac{A''_{675}}{A''_{675}} + \frac{A''_{675}}{A''_{675}}$. (3)

Defining $\frac{A_{615}}{A_{675}} = z$ the ratio of absorbance at 615 nm to 675 nm, for mixed culture,

 $\frac{A'_{615}}{A'_{675}} = x \text{ the ratio of absorbance at 615 nm to}$ 675 nm for*Chlorella*,

$$\frac{A_{615}''}{A_{675}''} = y \text{ the ratio of absorbance at 615 nm to}$$

$$\frac{675 \text{ nm for Anabaena}}{675 \text{ nm for Anabaena}},$$

and $\frac{A_{675}'}{A_{675}'} = r$ the ratio of absorbance at 675 nm for the blue-green alga to the absorbance at 675 nm for the green alga in mixed culture.

Equation (3) can now be reduced to:

$$z = \frac{x}{1+r} + \frac{y}{1/r+1};$$

multiply through by r/r;

$$z = \frac{x}{1+r} + \frac{yr}{1+r},$$

$$z + zr = x + yr,$$

$$r = \frac{x-z}{z-y}.$$
 (4)

Therefore in a mixed culture the absorbance at 675 nm due to the blue-green alga is given by:

$$A_{675}'' = \frac{r}{1+r} \cdot A_{675}$$
 (5)

and the absorbance due to the green algal component by:

$$A'_{675} = \frac{1}{r} \cdot A''_{675}.$$
 (6)

The value z may be obtained from in vivo absorbance data for the mixed culture, and x and y can be obtained from test unialgal cultures grown under the same conditions of light, temperature and nutrients. From these three values, equations (4), (5) and (6) were used to calculate the absorbance values for the green algal and blue-green algal components of the mixed culture. The values obtained are only useful when pigment ratios remain constant during an experiment. This point is treated in detail in the discussion.

To further investigate Anabaena/Chlorella interactions the two algae were grown in 'interaction tubes' in which the algal species were physically separated by a membrane filter but remained in chemical contact. The tubes were modifications of the design by Vance (1965) and consisted of two L-shaped glass tubes 25 mm diameter with ground faces clamped together holding a membrane filter (0.45 μ m) between the two compartments. To each arm was added 30 ml of ASM medium plugged with cotton wool and autoclaved. Following inoculation with the test algal species the tubes were placed on a shaker (70 rev/min) at constant temperature and continuous light. Growth was followed by removal of samples every one or two days for cell counting or absorbance measurements. The constant gentle movement of the tubes prevented clogging of the membranes by algae. Tests with dyes verified that dissolved substances rapidly exchanged between compartments and there was no cross contamination of cultures at any time.

Further tests for extracellular products were made on filtrates of batch cultured Anabaena, Chlorella and Microcystis. Cultures were grown in shaken flasks, centrifuged, filtered and the filtrate added to test algae in nutrient solution. Table 1. Initial and final cell count data for growth of Anabaena and Microcystis grown for 4 days in polythene or dialysis tubes suspended in the Mangere circulation channel in mid-January 1974

-	Cell No. 10 ⁵ ml ⁻¹	
Anabaena		
Initial	1.0	
Final polythene	6.6 ± 1.2	
Final dialysis	8.4 ± 0.2	
Microcystis		
Initial	1.0	
Final polythene	2.9 ± 0.4	
Final dialysis	3.0 ± 0.3	

Each figure represents the mean of 3 replicates \pm 1 S.E.M.

RESULTS

Growth of blue-green algae in ponds

Earlier experiments showed (Vincent & Silvester, 1979) that blue-green algae were totally inhibited by pond conditions during summer. To test whether this effect was due to low molecular weight compounds, *Anabaena* and *Microcystis* were inoculated into polythene and dialysis bags and suspended in the circulation channel in mid-January. After four days both species showed significant growth with little difference between final concentration in polythene or dialysis bags (Table 1). These results show that the dominant pond algae *Chlorella* and *Euglena* do not exert their dominance by a dialysable chemical substance.

Mixed culture experiments

The effects of interaction were tested in the laboratory by mixed batch culture experiments which were assayed by the '*in vivo* absorbance' method. Using three starting concentrations of Anabaena 0.05, 0.5 and 5.0×10^5 cells per ml Chlorella was added to 0, 0.05, 0.5 and 5.0×10^5 cells per ml. The final results of a nine day growth period show that only at the lowest initial concentration of Anabaena did Chlorella inhibit (Table 2). This is confirmed in the *in vivo* absorbance assay which shows the growth assayed over the whole nine days (Fig. 2). These results show in more detail that the high Chlorella concentration had an initial effect on Anabaena growth, but only at the lowest Anabaena concentration was this inhibition maintained (Fig. 2c). Thus the *in vivo* absorbance

Fig. 2. Growth of Anabaena in mixed culture with Chlorella in ASM, shaken at 125 rev/min under 2500 lux continuous fluorescent light at 28°C. Growth assayed by relative absorbance at 675 nm (A_{675}^*). Initial concentration of Chlorella (cells per ml): zero O; $5.0 \times 10^5 \oplus$; 5.0×10^4 \Box ; $5.0 \times 10^3 \blacksquare$. Initial concentration of Anabaena (cells per ml): 5.0×10^5 Fig. 2a; 5.0×10^4 Fig. 2b; 5.0×10^3 Fig. 2c.

method generally confirms the final growth data but gives an insight into the growth dynamics of the cultures. However the inhibition in terms of cell numbers (Table 2) is somewhat less than anticipated in the *in vivo* absorbance (Fig. 2c) indicating a possible pigment change.

In the reciprocal experiment in which final Chlorella numbers are plotted (Table 3) the result is conclusive in that Chlorella is inhibited at all levels of Anabaena concentration. This result is expanded by the in vivo absorbance results (Fig. 3) in which there is

Table 2. Final cell counts for Anabaena grown in mixed culture with Chlorella for 9 days in ASM under 2500 lux fluorescent light at 28°C

Initial conc. of Chlorella	Initial conc. of Anabaena (10^5 ml^{-1})		
(10 ⁵ ml ⁻¹)	0.05	0.5	5.0
0	66	96	120
0.05	69	95	104
0.5	71	78	120
5.0	39	94	103

Each figure represents the mean for 2 replicates.

Table 3. Final cell counts for Chlorella grown in mixed culture with Anabaena for 9 days in ASM under 2500 lux fluorescent light at $28^{\circ}C$

Initial conc. of Anabaena	Initial cor	Initial conc. of <i>Chlorella</i> (10 ⁵ ml ⁻¹)		
(10^5 ml^{-1})	0.05	0.5	5.0	
0	84	116	171	
0.05	19	35	80	
0.5	7	11	62	
5.0	0.4	9	44	

Each figure represents the mean for two replicates.

both quantitative and qualitative confirmation of the ability of Anahaena to suppress growth of Chlorella.

Interaction tube experiments

The interaction was further studied in interaction tubes whereby similar initial algal concentrations were separated by a membrane filter and their growth followed for eight days. The growth curve for *Anabaena* (Fig. 4a) confirms that *Chlorella* does not inhibit *Anabaena*; in fact the presence of *Chlorella* is shown to stimulate *Anabaena* growth and this is confirmed as a significant effect in the final cell counts (Table 4).

The inhibitory effect of *Anabaena* on *Chlorella* is also confirmed in interaction tubes (Fig. 4b) where growth is reduced to half that of control tubes (Table 4).

An exactly comparable set of results is obtained

using Microcystis (Fig. 5) in which Chlorella is strongly inhibited by Microcystis but stimulates the

blue-green algal growth; the effect however with Mic-

rocystis is not observed until late in the growth phase.

Cultures of Anabaena, Chlorella and Microcystis

were raised to 10^7 , 10^8 and 5×10^6 respectively and

the supernatant was filtered (0.45 µm) and 30 ml of

filtrate added to 70 ml cultures of the three algae in ASM. The results for Anabaena (Fig. 6a) show no

significant effect of added filtrates while for Micro-

cystis (Fig. 6b) the Chlorella filtrate gave a significant

Filtrate experiments

enhancement of growth.

Fig. 3. Growth of *Chlorella* in mixed culture with *Anahaena*, in ASM shaken at 125 rev/min under 2500 lux continuous fluorescent light, at 28°C. Growth assayed every two days by relative absorbance at 675 nm (A₆₇₅). Initial concentration of *Anabaena* (cells per ml): zero O; 5.0 × 10⁴ \Box ; 5.0 × 10³ \blacksquare . Initial concentration of *Chlorella* (cells per ml): 5.0 × 10⁵ Fig. 3a; 5.0 × 10⁴ Fig. 3b; 5.0 × 10³ Fig. 3c.

Fig. 4. Growth of *Chlorella* and *Anabaena* in interaction tubes. Shaken at 70 rev/min, under 2500 lux fluorescent light at 28°C on ASM. Growth assayed by 'in vivo absorbance' at 675 nm. Each point represents the mean of four replicates, ± one S.E.M. (a): Growth of *Anabaena*: opposite *Chlorella* □; opposite uninoculated compartment O. (b): Growth of *Chlorella*: opposite *Anabaena* **■**; opposite uninoculated compartment **●**.

Table 4. Initial and final cell concentration data for growth of Anabaena and Chlorella for 8 days in interaction tubes, shaken at 70 rev/min under 2500 lux fluorescent light at 28°C in ASM

	Cell No. 10 ⁵ ml ⁻¹	
Chlorella		
Initial	1.0	
Control	119 ± 8.1	
Opposite Anabaena	53 ± 2.4	
Anabaena	_	
Initial	1.0	
Control	15 ± 1.8	
Opposite Chlorella	24 ± 1.6	

Each figure represents the mean for 4 replicates \pm 1 S.E.M.

Growth of *Chlorella* (Fig. 6c) was significantly enhanced by addition of *Chlorella* filtrate and completely suppressed by filtrates of both blue-green algae. It is significant that addition of 30 ml deionized water as one of the controls did not alter growth rate over the ASM only control and thus any suppression or stimulation effect of added filtrate is not due to increase or dilution of inorganic nutrient.

DISCUSSION

The in situ bag experiments allowed growth of the blue-green algae to be studied under physical and, in the case of the dialysis tubes, chemical conditions close to those normally experienced in the Manukau ponds. It is assumed that the dialysis membrane allowed free exchange of compounds between the cultures and the pond water; however this material has a very small pore diameter (ca. 3 nm) which would resist movement of higher molecular weight substances such as proteins. Various polypeptide molecules are known to be secreted by certain algae-for example the toxins produced by some blue-green algal strains-and it is therefore possible that in the dialysis tubes high molecular weight inhibitory compounds were excluded. However this is unlikely since good growth of blue-green algae on 0.45 µm filtered pond water was recorded throughout the year (Vincent & Silvester, 1979) and no inhibitory effects on

Fig. 5. Growth of *Microcystis* and *Chlorella* in interaction tubes. Shaken at 70 rev/min under 2500 lux fluorescent light at 28°C in ASM. Growth assay by cell count. Each point represents the mean of three replicates \pm one S.E.M. (a). Growth of *Microcystis*: opposite *Chlorella* Δ ; opposite uninoculated compartment O. (b). Growth of *Chlorella*: opposite *Microcystis* Δ ; opposite uninoculated compartment Φ .

Algae cultured at 28°C, under 2500 lux fluorescent light, shaken at 125 rev/min. Each point represents the mean of three replicates ± one S.E.M. (a) Growth of Anabaena in 70 ml ASM plus 30 ml: sterile deionized water □; ASM A; Anabaena filtrate •; Chlorella filtrate 0. (b) Growth of Microcystis in 70 ml ASM plus 30 ml: sterile deionized water □; ASM A; Microcystis filtrate •; Chlorella filtrate O. (c) Growth of Chlorella in 70 ml ASM plus 30 ml: sterile deionized water □; ASM A; Microcystis filtrate ■; Anabaena filtrate •; Chlorella filtrate 0.

721

Chlorella or Anahaena could be detected in this water.

In mixed culture, Anabaena outgrew and dominated Chlorella, providing the concentration of the green algae was not high. Competition for a limiting nutrient is one of the many possible factors operating in mixed culture. In the interaction and mixed culture experiments it is possible that the depression of growth of Chlorella was due to differential rates of uptake of nutrients by the two algae. Blue-greens are known to be capable of assimilating phosphate at much faster rates than green algae, and to grow on stored reserves for extended periods (Shapiro, 1970). Therefore rapid nutrient uptake by Anabaena may have resulted in nutrient depletion and hence lowered growth rates of Chlorella. Other factors regulating growth in mixed cultures include competition for light and dissolved gases. Blue-green algae are capable of more efficient utilisation of low light intensities, as might be experienced with concentrated cultures in which light shielding is high, than green algae due to the high efficiency of energy transfer by phycobilins to chlorophyll a (Emerson & Lewis, 1942). These algae also exhibit more favourable CO₂uptake kinetics (Shapiro, 1973), which would be particularly significant at low carbon dioxide tensions.

The *in vivo* absorbance assay proved to be a useful technique for following the general growth trends of *Chlorella* and *Anabaena* in mixed culture. However it is only an approximate guide since it assumes that the 615-675 nm absorbance ratios remain constant throughout the period of growth. In fact these ratios vary somewhat as nutrient conditions and the physiological state of the algae change. The final cell counts and absorbance measurements at day nine for the mixed culture experiment appear to correlate well, with the exception of certain treatments in the 5×10^5 *Chlorella* series, probably due to changes in the relative cellular concentrations of the major pigments.

The very severe depression of growth of Chlorella by the presence of Anahaena suggests that some inhibitory compound was the major responsible factor; this was verified by filtrate and interaction tube experiments. Such inhibition effects have been reported in other blue-green algal studies. Vance (1965) found both in laboratory and field experiments that Microcystis aeruginosa produced compounds which suppressed the growth of Cryptomonas ovata, Ceratium spp. and Phacus longicauda. Jakob (1961) demonstrated that filtrates from cultures of the soil alga Nostoc muscorum had a lethal effect on several eucaryotic algae including Euglena and Cosmarium species as well as on another blue-green algae, Phormidium. The toxic substance responsible was isolated and identified as a dihydroxyanthroguinone. Various inhibitory substances produced by green algae have been discovered. Chlorococcum was found to produce a substance which inhibited the growth of Chlamydomonas. This factor was located in the steam volatile fraction of Chlorococcum filtrates and its activity was found to be strongly dependent upon pH (Kroes, 1971, 1972). Certain strains of Chlorella vulgaris are well-known producers of auto-inhibiting compounds. These 'chlorellins' appear to be peroxides which under 'certain critical conditions' are produced by the photo-oxidation of fatty acids (Scult, 1964). The ecological role of these antibiotic substances remains unclear. Vance (1965) believes that such compounds are responsible for the sudden decline of blooms and are of importance in the control of algal succession. However in view of the ameliorating effect the environment would have on these substances, and the ability of many algae to adapt to various toxins and antibiotics, Sieberth (1968) has concluded that extracellular inhibitors produced by algae act as controlling factors only under exceptional conditions.

In the filtrate and interaction tube studies it appeared that the strain of *Chlorella* isolated from Mangere produces compounds which have a stimulatory effect on its own growth and on the growth of Microcystis. One algal product frequently reported in the literature for its stimulatory properties is glycollate. Sen & Fogg (1966) observed that a planktonic strain of Chlorella pyrenoidosa which liberates extracellular glycollate grows twice as fast at low light intensities in the presence of $1.0 \text{ mg} \text{ l}^{-1}$, of glycollate than in purely mineral medium. More recently, Lord & Merrett (1971) demonstrated photoassimilation of glycollate by another strain of C. pyrenoidosa, while Nelson et al. (1969) have found that Scenedesmus obliquus secretes glycollate but can assimilate this compound both heterotrophically and by photoassimilation. Several other compounds which have a growth stimulation effect have been reported. Filtrates from the green alga Hormotila blennista stimulated the growth of itself and of a planktonic Scenedesmus species (Monahan & Trainor, 1970). This effect was later associated with a high molecular weight heatstable component of the filtrate (Monahan & Trainor, 1971).

In the interaction tube experiments the stage of growth of each alga appears to be important in determining the activity of the growth compounds. A similar effect has been noted by Proctor (1957) who discovered that filtrate from a 2 day old culture of Chlamydomonas stimulated growth of Haematococcus while filtrate from 4-6 day old cultures proved toxic. The interaction experiments using the Manukau Chlorella isolate add further support to the conclusions of the previous paper (Vincent & Silvester, 1979) that the current absence of blue-green algae from these ponds is associated with their inability to successfully compete with high resident populations of green algae rather than to extracellular product effects. On the other hand it appears that, at least for the strains used in this study, as long as the physical conditions for growth are adequate, Anabaena and Microcystis are able to completely dominate Chlorella by production of some toxic or inhibitory extracellular product. Dominance by blue-green algae in oxidation ponds is a common phenomenon in lightly loaded ponds during the establishment phase (Haughey, 1969) and the present study shows that this dominance will be easily initiated if the green algal population drops significantly and if this happens during the summer when temperatures favour bluegreen algal growth.

REFERENCES

- Emerson R. & Lewis C. M. (1942) The photosynthetic efficiency of phycocyanin in *Chrococcus*, and the problem of carotenoid participation in photosynthesis. J. gen. Physiol. 25, 579-595.
- Fogg G. E. (1971) Extracellular products of algae in fresh water. Arch. Hydrobiol. Beih. Ergebn. Limnol. 5, 1-25.
- Gorham P. R., McLachlan J. S., Hammer V. T. & Kim W. K. (1964) Isolation and culture of toxic strains of Anabaena flos-aquae (Lyngb.) de Breb. Verh. int. Verein. theor. angew. Limnol. 15, 796-804.
- Haughey A. (1969) Further planktonic algae of Auckland Sewage Treatment ponds. N.Z. J. mar. Freshwat. Res. 2, 245-261.
- Jakob H. (1961) Compatibilites antagonismes et antibioses entre quelques algues du sol. Rev. gen. Bot. 68, 5-72.
- Krocs H. W. (1971) Growth interactions between Chlamydomonas globosa Snow and Chlorococcum ellipsoideum Deason and Bold under different experimental conditions, with special attention to the role of pH. Limnol. Oceanogr. 16, 869-879.
- Kroes H. W. (1972) Growth interactions between Chlamydomonas globosa Snow and Chlorococcum ellipsoideum Deason and Bold: the role of extracellular products. Limnol. Oceanogr. 17, 423-432.
- Kroes H. W. (1973) A spin filter system for the study of algal interactions. Oceologia 11, 93–98.

- Lord M. J. & Merrett M. J. (1971) The growth of Chlorella pyrenoidosa on glycollate. J. exp. Bot. 22, 60-69.
- Monahan T. J. & Trainor F. R. (1970) Stimulatory properties of filtrate from the green alga Hormotila blennista.
 I: Description. J. Phycol. 6, 263-269.
- Monohan T. J. & Trainor F. J. (1971) Stimulatory properties of filtrate from the green alga *Hormotila hlennista*. II: Fractionation of filtrate. J. Phycol. 7, 170-176.
- Nelson E. B., Tolbert N. E. & Hess J. L. (1969) Glycollate stimulation of oxygen evolution during photosynthesis: *Pl. Physiol.* 44, 55-59.
- Proctor V. W. (1957) Studies of algal antibiosis using Haematococcus and Chlamydomonas. Limnol. Oceanogr. 2, 125-139.
- Scult J. E. (1964) Autoinhibitor production by Chlorella vulgaris. Am. J. Bot. 51, 581-584.
- Sen N. & Fogg G. E. (1966) Effects of glycollate on the growth of a planktonic Chlorella. J. exp. Bot. 17, 417-425.
- Shapiro J. (1970) A statement on phosphorus. J. Wat. Pollut. Control Fed. 42, 772-775.
- Shapiro J. (1973) Blue-green algae: why they become dominant. Science 179, 382-384.
- Shibata K., Benson A. A. & Calvin M. (1954) The absorption spectra of suspensions of living micro-organisms. *Biochim. biophys. Acta* 15, 461–470.
- Shibata K. (1958) Spectrophotometry of intact biological materials. J. Biochem. 45, 599-623.
- Sieberth J. McN. (1968) The influence of algal antibiosis on the ecology of marine microorganisms. (Edited by: Droop M. R. & Ferguson Wood E. J.). In Advances in Microbiology of the Sea. Vol. I, pp. 63-94, Academic Press, London and New York.
- Vance B. D. (1965) Composition and succession of Cyanophycean water blooms. J. Phycol. 1, 81-86.
- Vincent W. F. & Silvester W. B. (1979) Growth of bluegreen algae in the Manukau (New Zealand) oxidation ponds. I: Growth potential of oxidation pond water and comparative optima for blue-green and green algal growth. Water Res. 13, 711-716.