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Abstract Arctic lakes, ponds and streams contain benthic microbial mats that are

dominated by cyanobacteria, and these communities often account for a large proportion of

the total ecosystem biomass and productivity. The vertical structure and composition of

mats from two different aquatic habitats in the Canadian High Arctic, Ward Hunt Lake and

a polar desert stream were analyzed in detail by microscopy techniques. Two distinct

layers were identified in each mat: a surface layer with a high density of cells and asso-

ciated extracellular polymeric substances (EPS), and a less cohesive bottom layer with an

accumulation of mineral particles. The matrix formed by the cyanobacterial filaments and

EPS produced the complex microstructure of all three mats, and likely favoured different

microenvironments where specialized microbial interactions and biomineralization pro-

cesses could take place. Structural and compositional differences were found among the

mats. The lake mat had a surface layer of Dichothrix, and contained abundant particles of

calcium carbonate, while Tychonema-like and Tolypothrix-like appeared mainly in the

stream mats, along with a higher diversity of Chroococcales. A black microbial mat from

one of the stream sites had markedly lower diversity than the other mat types. The ob-

served differences in cyanobacterial composition and physical structure may be related to

habitat stability and the availability of liquid water.
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Introduction

Freshwater ecosystems in the polar zones are subjected to extreme environmental conditions

including large variations in light availability and temperature, in combination with periods

of freezing and a short season of open water conditions (Villeneuve et al. 2001).

Cyanobacterial communities often dominate Arctic and Antarctic freshwater ecosystems,

particularly the benthic habitats of lakes, ponds and streams where microbial mats form

highly pigmented biofilms that carpet the bottom substrata (Singh and Elster 2007; Quesada

and Vincent 2012; Vincent and Quesada 2012). Microbial mat communities growing in

surface melt pools on ice polar regions are dominated by oscillatorian cyanobacteria (Vincent

et al. 2000; De los Rı́os et al. 2004), although other cyanobacterial groups, notably in the

orders Nostocales and Chroococcales are also present and are abundant (Jungblut et al. 2005;

Jungblut et al. 2010; Taton et al. 2008; Verleyen et al. 2010; Lionard et al. 2012). All of these

cyanobacterial taxa are known to secrete mucilaginous organic compounds and bind together

sediment particles, resulting in cohesive mats and films that offer protected microhabitats for

less tolerant biota, algae, heterotrophic protists and microinvertebrates (Vincent et al. 2000).

An enormous diversity of heterotrophic bacteria is also known to occur within such mats

(Varin et al. 2010). Cyanobacteria are thus not only the main primary producers in these

systems, but they also provide organic substrates and the physical scaffolding for the many

other components of the microbial mat consortia (Noffke et al. 2003; De los Rı́os et al. 2004).

Photosynthetically active radiation (PAR) is strongly attenuated through the vertical

profile of polar microbial mats (Quesada et al. 1999), and this provides sharp gradients of

redox and other biogeochemical properties, from oxygen supersaturation at the surface to

anoxic conditions at the bottom, where anaerobic processes take place (Fernández-Valiente

et al. 2007). These gradients promote the growth of the different elements of the mat

microbial community with different ecological roles (Paerl and Pinckney 1996). Some

organisms in the microbial mat can adjust their position within the mat profile to their

optimal environmental conditions (e.g. radiation, redox potential, etc.; Quesada et al.

2001). The chemical characteristics of the interstitial water within the mat are known to be

different to those of the overlying water column (Vincent and Quesada 2012; Villeneuve

et al. 2001). However, the chemistry of the ambient water can also have a strong influence

on the formation of these biogeochemical gradients within the mats (Petroff et al. 2010).

The three dimensional microstructure of microbial mats is best investigated with a

combination of different, complementary microscopic techniques such as optical, scanning

electron and confocal scanning laser microscopies. For example, the combined application

of these approaches to microbial mats on the McMurdo Ice Shelf (Antarctica) revealed a

pronounced vertical stratification of cyanobacterial taxa and mineral sediments, a high

content of extracellular polymeric substances (EPS), and large void spaces within the

matrix that were occupied by water (De los Rı́os et al. 2004).

In spite of the major importance of freshwater microbial mats in the High Arctic, they have

been investigated only recently from a structural perspective (e.g., Lionard et al. 2012). In this

paper we extend the knowledge of these mat communities in the Arctic, with attention to the

variability among mat types. We sampled mats from three contrasting sites, a lake and two

streams, located in the northern Ellesmere Island region of the Canadian High Arctic. We

then applied a range of microscopy techniques to examine mat microstructure and

cyanobacterial composition. As the purpose of this article is not taxonomical, we have not

included species names and even the generic names should not be consider of taxonomical

value but rather as morphological approximations.
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Materials and methods

Study sites and sample collection

In the Arctic summer of 2000–2001, microbial mats from two freshwater ecosystems were

sampled in the northern Ellesmere Island region, Canadian High Arctic: Ward Hunt Lake

(Fig. 1a) on Ward Hunt Island (838020N, 738150W), and a stream at Taconite Inlet

(Fig. 1b), on the northern coast Ellesmere Island (828500N, 788000W). These waters occur

in polar desert catchments with sparse vegetation. Ward Hunt Lake is a small waterbody

(area = 0.35 km2; Zmax = 10 m) with perennial ice cover over most of its surface but a

moat section on its western side that thaws every summer. The water temperature during

the study period ranged between 1 and 9 �C over the 24 h cycle, conductivity was

140 lS cm-1 and pH 8.38, with 100 % oxygen saturation (13.35 mg/L at 1.3 �C). The

stream investigated (designated stream C1) collects water from melting snowbanks from

the hills close to Lake C1 and has a 4 m wide but shallow (10–20 cm deep) flowing water

Fig. 1 a Ward Hunt lake. b Stream C1 at Taconite Inlet. c View of the surface of Ward Hund lake mat.
d View of the surface of Stream C1, showing pink and black microbial mats. e View of the surface of pink
mat in stream C1. f View of the surface of black mat in stream C1
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layer with temperatures ranging from 4 to 12 �C. Its conductivity was 197 lS scm-1, pH

was 7.21, and the oxygen was at 100 % saturation. Chemical analyses (Table 1) indicated

similar conditions at the two sites, with oligotrophic, low nutrient and major ion con-

centrations. Nutrient concentrations in Ward Hunt Lake were somewhat lower than in the

stream.

The microbial mats were collected by cutting squares of 5 by 5 cm of the cohesive layer

and placing them on a plastic tray using an alcohol-sterilized plastic spatula. Several cores

of this mat were then subsampled with a metal corer of 11 mm inner diameter. In Ward

Hunt Lake, the microbial mats carpeted the bottom of most of the eastern shallow water

littoral zone (Fig. 1c), and samples were near the shore from 10 to 15 cm depth. Stream C1

in Taconite Inlet showed two morphologically distinct mats that also differed in color and

distribution (Fig. 1d). Pink colored mats occurred in 5–10 cm depth of flowing water

(Fig. 1e), while black mats (Fig. 1f) occurred on raised sections of the stream bed where

the substrate was saturated but not completely immersed in flowing water at the time of

collection. The mat samples for microscopy were transferred immediately to tubes con-

taining 3 % glutaraldehyde in a phosphate buffer (100 mM; pH 7.1). The samples were

fixed for 3 h, washed twice with phosphate buffer (100 mM; pH 7.1) and then stored at

4 �C until further analysis. The remaining mat samples were placed on dry absorbent paper

for 30 s to remove the excess water and stored in sterile plastic bags at -80 �C until further

analysis. Subsamples were also observed immediately in the field by light microscopy.

Optical microscopy

The frozen samples were placed in sterile petri dishes and after thawing at room tem-

perature were observed intact under a Leica MZ12.5 stereoscope at 5–509 magnification.

The mats were then teased out with forceps and further examined. Different sections of the

mats were separated with a scalpel blade, placed on slides and observed at 40–10009 with

an Olympus BH10 fluorescence microscope equipped with a DFC 300EFX Leica camera.

Five core samples from each mat type were analyzed in this way.

Confocal laser scanning microscopy (CLSM), scanning electron microscopy
(SEM) and X-ray energy dispersive spectroscopy (EDS)

The samples for CSLM, SEM and EDS were prepared according to the procedures de-

scribed in De los Rı́os et al. (2004). In brief, the in situ glutaraldehyde fixed samples (see

above), were then fixed in the laboratory with osmium tetroxide (with the exception of the

samples for CSLM), dehydrated in a series of ethanol solutions, and embedded in LR-

White resin. Blocks of resin-embedded mats samples were finely polished.

CSLM samples were examined with LSM 310 Zeiss confocal microscope. An argon

laser was used to generate an excitation wavelength of 488 nm and the resultant emission

Table 1 Water chemistry of C1 stream (C1-S) and Ward Hunt Lake (WHL)

Site DOC DIC SRP NO2–N NO3–N TN TP SiO2 Ca

C1-S 1.3 19.8 0.021 0.003 0.038 0.156 nd nd nd

WHL 0.3 1.8 0.005 0.001 0.018 0.059 0.004 0.07 5.57

Values are in mg l-1

nd non determined
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was filtered through a long pass filter ([515 nm). The three-dimensional images were

made up of several confocal sections at 0.5–1 lm increments through the sample, by

computer assisted microscopy, and three-dimensional reconstruction was then applied to

visualize the mat microstructure.

Osmium tetroxide fixed samples were carbon coated and examined using DSM-960

Zeiss and FEI INSPECT SEM microscopes, both equipped with a four-diode, semicon-

ductor BSE detector and a Link ISIS microanalytical EDS system. The samples were

studied in Back Scattered electron mode (SEM–BSE). EDS examination of the samples

was simultaneously performed. The microscope was operated at 15 kV acceleration po-

tential and 1–5 nA specimen current.

Low temperature scanning electron microscopy (LTSEM)

Small microbial mat fragments were sprayed with distilled water and, after eliminating

excess water, were mechanically fixed onto the specimen holder of a cryotransfer system

(Oxford CT1500), immediately cryofixed by plunging into subcooled liquid nitrogen, and

then transferred to the microscope preparation unit via an air-lock transfer device following

the protocol described in (De los Rı́os et al. 2004). The frozen specimens were cry-

ofractured in the preparation unit and transferred directly via a second air lock to the

microscope cold stage where they were etched for 2 min at -90 �C. After ice sublimation,

the etched surfaces were gold sputter-coated in the preparation unit and the specimens

placed on the cold stage of the SEM chamber. Fractured surfaces were observed using a

Zeiss DSM-960 SEM microscope at -135 �C.

Morphological identification of cyanobacteria

Five cores from each microbial mat were observed under the optical microscope to identify

the different morphologies. The identification of the different cyanobacteria was done to

genus level following Komarek and Anagnostidis (1989, 1999, 2005). The morphological

characteristics of the different taxa were recorded in detail, including cell size and the

cellular arrangement in colonies. A total of 100 cells of each morphotype were measured

and the average was calculated. If the average length and breadth of the different mor-

phologies fell within the range of 1 standard deviation of the mean, the taxa were con-

sidered morphologically identical. No taxonomical identification was intended in this

work.

Results

Biological description

The microbial mats were dominated by cyanobacteria, with associated microalgae be-

longing to different taxonomic groups, diverse mineral agglomerates and large amounts of

extracellular polymeric substances (EPS). Bacteria, fungi and metazoans were also present,

but were not identified. There were differences in microstructure as well as in phototrophic

composition and the quantity of mineral particles.
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Ward Hunt Lake mat

Macroscopically, this mat was 3–5 mm thick with a pink-orange surface embedded with

numerous dark gelatinous colonies. There were two distinct layers, as visualized by

LTSEM (Fig. 2), that could be readily separated. The thin surface layer (noted by arrows in

Fig. 2) had a more cohesive structure than the looser thick bottom layer that was dark

50 µmFig. 2 General view of Ward
Hunt Lake mat (LTSEM).
Arrows point to the upper layer of
the mat
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Fig. 3 Upper layer of Ward Hunt Lake mat. a Optical image of Dichothrix sp. colony at the surface of the
mat and associated mineral particles (asterisks). b Optical image of Dichothrix sp. filament. c LTSEM image
of transversely sectioned terminal zones of Dichothrix sp. filaments. d SEM–BSE image of Dichothrix sp.
layer showing association with calcium carbonate particles (asterisks). e EDS map of calcium in the area of
(d). f Optical image of thin filamentous cyanobacteria surrounding a Dichothrix filament. g Optical image of
fungi present in (e) area. h Optical image of Nostoc colony. I, SEM–BSE image of Nostoc cells associated
with calcium carbonate deposits (arrow). j Spectrum of the mineral deposit indicated by an arrow in (i).
k CSLM image of Nostoc colony immersed in the thin filamentous cyanobacterial matrix. l SEM–BSE
image of calcium carbonate deposits present in the thin filamentous cyanobacterial matrix
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green in colour. The bottom contained abundant populations of thin oscillatorian

cyanobacteria and it fluoresced more intensively under the fluorescence microscope with

green excitation than the surface layer.

The surface, near-spherical dark gelatinous colonies were composed of Dichothrix sp.

(Fig. 3a, b), with inclusions of mineral particles (asterisks). The largest observed cell

(close to the heterocyst) was 18.0 lm wide and 3.7 lm long, while the heterocyst in this

100 µm

A B

C D E

F G
20 µm 5 µµm

10 µm

50 µm

20 µm

Ca

P

20 µm

Fig. 4 Bottom layer of Ward Hunt lake mat. a SEM–BSE image and EDS map of calcium and phosphorus
of one of the mineral particles present in this layer. b LTSEM image of cyanobacterial microcolonies with
dense mucilage (stars). c SEM–BSE image of Chroococcus-type colony. d Optical image of Nostoc colony
with almost spherical cells. e Optical image of Nostoc colony with cylindrical cells. Arrows note thin
cyanobacterial filaments. F, LTSEM image of thin cyanobacterial trichomes of striate cell walls. h LTSEM
image of a transversely sectioned trichomes showing EPS fibers connecting the cell (arrow) with external
envelope
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filament was 20.2 by 13.4 lm. The heterocysts averaged 8.8 by 4.4 lm, and the largest

cells in each filament averaged 12.2 by 3.8 lm. In some cases the Dichothrix sheaths were

empty. The outer terminal zone of the filaments had a broad envelope of different layers of

EPS, which created a denser matrix around the cells (Fig. 3c). These envelopes had as-

sociated deposits of CaCO3, as visualized by SEM–BSE (asterisks in Fig. 3d) and EDS

(clear spots in the Ca distribution map, Fig. 3e). The Dichothrix filaments were surrounded

by thin filamentous cyanobacteria (cf. Leptolyngbya; Fig. 3f) that fluoresced red on a

fluorescence microscope using green excitation. Fungal-like hyphae were also observed

surrounding the filament sheaths (Fig. 3g). There were additionally small flattened colonies

at the surface that were black and also contained mineral particles. Light microscopy

revealed that these were Nostoc colonies, with short filaments only a few cells long,

embedded within dense orange sheaths (Fig. 3h). The cells were 5.9 by 7.6 lm and

heterocysts 5.0 by 3.7 lm. Calcium carbonate deposits were observed associated with

these cells, as revealed by SEM–BSE microscopy (Fig. 3i) and spot qualitative EDS

microanalysis (Fig. 3j). These colonies were solidly attached to the mat, which was

composed of a matrix of thin filamentous cyanobacteria of several sizes and shapes

(Fig. 3k), containing numerous calcium carbonate particles (Fig. 3l). At the interphase

between the two layers, there were two sizes of oscillatorians: filaments of ca. 4 lm

diameter that fluoresced red on fluorescence microscope and thinner filaments of around

2.5 lm diameter that fluoresced orange, implying higher concentrations of phycoerythrin

in the latter.

The bottom layer of the Ward Hunt mats contained higher concentrations of thin

oscillatoriales, with the presence of mineral particles (Fig. 2). EDS microanalysis showed

that these particles were composed mostly of calcium carbonate (Fig. 4a). Empty Di-

chothrix sheaths were also found at the bottom layer, along with microcolonies of the

genera Nostoc, cf. Gloeocapsa and cf. Chroococcus (Fig. 4b, c). Two distinct morpholo-

gies of Nostoc colonies were identified in this bottom layer, one with almost spherical cells

(3.8 9 3.7 lm, with heterocysts 4.7 9 4.8 lm; Fig. 4d), and the other with a yellow

sheath and cylindrical cells (4.2 9 2.6 lm, with heterocysts 4.9 9 4.2 lm; Fig. 4e). Thin

cyanobacterial filaments were intermixed with Nostoc cells within the colonies (arrows in

Fig. 4e). The Gloeocapsa-type and Chroococcus-type colonies (Fig. 4c) were composed of

groups of cells with lamellar, well delimited mucilaginous sheaths. Flat filaments of

cyanobacteria with widened and lamellated sheath (likely Tolypothrix) were also observed

in transition zone of the mat, and thin cyanobacterial trichomes with striate cell walls were

also abundant (Fig. 4f). These latter filaments were observed by LTSEM with similar

orientations and within wide cavities in the mat (Fig. 4g). Some radial EPS fibres con-

necting the cells with the external envelope were the only component observed in the

cavities (arrowhead in Fig. 4g). The thin oscillatorians in the matrix were diverse in size

and morphology (Fig. 5a), including false-branching cf. Plectonema of two different di-

ameters (arrow in Fig. 5a, b), Pseudanabaena-type (Fig. 5c), and Leptolyngbya-type with

different diameters (Fig. 5d, e). Wider oscillatorians were also found, with four different

diameters: 2, 4.6, 7 and 10 lm (Fig. 5f–h). Broader green algal filaments including cf.

Zygnema (20 9 21 lm), and many diatom taxa were also found (Fig. 5g).

Pink mat in stream C1

Macroscopically, the immersed stream mat was 3–4 mm in thickness and was composed of

two layers (Fig. 6). The surface layer was pink-orange in colour, and inlaid with black

colonies. This overlaid bottom layer was intense green in colour. The two layers were well
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connected and could only be separated by scalpel. The surface layer contained diverse

morphotypes of filamentous and colonial cyanobacteria. It was non-fluorescent under green

excitation on fluorescence microscope, despite the presence of thick filamentous

cyanobacteria. The bottom layer was highly fluorescent under green excitation, due to a

high abundance of thin filamentous cyanobacteria in combination with thick filaments and

microcolonies. LTSEM showed considerable variations in microstructure depending on the

density of cells and EPS (Fig. 6). The upper part of the mat (noted by arrows in Fig. 6) was

A B

C

D

E

F

D

G H

50 µm 5 µm

10 µm 5 µm

20µm

10 µm

20 µm 20 µm

Fig. 5 Bottom layer of Ward Hunt Lake mat. a CSLM image of the matrix formed by thin oscillatoriales.
Arrow notes Plectonema-type filaments. b–h Optical images of false-branching cf. Plectonema (b), cf.
Pseudanabaena (c), cf. Leptolyngbya (d, e) and wide oscillatoriales (f, h) filaments
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200 µm

Fig. 6 General view of pink mat
in stream C1 (LTSEM). Arrows
note the upper layer of the mat
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a compact layer with the agglutination of cells by a large amount of EPS (Fig. 7a), while

the bottom layer was formed by dispersed cyanobacterial cells or trichomes (Fig. 6). In

addition to cyanobacteria, diatoms (Fig. 7b) and green algae were also commonly ob-

served. These algal cells were fully immersed in the EPS matrix, which also contained

fungal-like hyphae (white arrows in Fig. 7b) and bacterial cells (black arrows in Fig. 7b).

N

G

A B

C

E

F

D

E H

G

G

H

I

10 µm 20 µm

d d

d

100 µm

50 µm

100 µm

20 µm

10 µm20 µm

20 µm

Fig. 7 Upper layer of pink mat in stream C1. a LTSEM image of the upper layer. b LTSEM image of
diatoms (d) embedded in the EPS matrix containing fungal (white arrows) and bacterial (black arrows)
cells. c Optical image of Gloeocapsa-type colonies separated by a cyanobacterial filamentous matrix.
d CSLM image of coccoid cyanobacteria colonies associated to a filamentous cyanobacteria matrix. e–
h Optical images of black Nostoc and (e) and cf. Gloeocapsa (f) colonies and Tychonema-type (g) and
Plectonema-type filaments (h). i CSLM image of a Nostoc colony
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Fig. 8 Bottom layer of pink mat in stream C1. a CSLM image of the filamentous cyanobacteria matrix
containing thick and thin cyanobacterial filaments. b Optical image of Tolypothrix-type showing the single
false branching. c Optical image of colonies of Gloeocapsa-type cyanobacteria with no colour. d LTSEM
image of a diatom frustule. e–g Optical images of cf. Gloeocapsa (e) cf. Chroococcus (f) and cf.
Aphanocapsa (g) colonies. h SEM–BSE image of an cf. Aphanothece colony. i Optical image of
Pseudanabaena-type filaments
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The bottom layer of this mat type had a higher density of EPS and abundant mineral

particles that were homogenously distributed through this layer (Fig. 6). The biological

components in both layers were apparently similar.

The black surface colonies included old, non-fluorescent Dichothrix sp. colonies sur-

rounded by fluorescent, medium size filaments, and larger spherical colonies made up of

Gloeocapsa sp. with 1.5–1.7 lm diameter cells (Fig. 7c). These latter colonies were each

separated and surrounded by cyanobacterial filaments of at least three different diameters:

1, 1.3 lm and a Pseudanabaena-type of 1.15 9 4 lm (Fig. 7c, d). Other genera present in

this surface layer included Chroococcus-type (7.5 9 5.9 lm) with a thick sheath

(10 9 7.3 lm); Aphanocapsa-type colonies of different cell sizes (3.7 and 5.4 lm); black

Nostoc colonies with tightly arranged 6.5 lm diameter spherical cells (Fig. 7e); black

Gloeocapsa-type colonies (Fig. 7f); and a Tychonema-type oscillatorian with thick bundles

of 3.27 lm-wide, rigid filaments and large granules up to 3 9 2.6 lm in size, and some

filaments terminating in a calyptra (arrow in Fig. 7g). The matrix also contained abundant

populations of cf. Plectonema-with 1.9 9 3.2 lm granulated cells and a thick sheath

(3.2–5.2 lm; Fig. 7h), narrow cyanobacterial filaments (0.7 lm in diameter) and a narrow

(1 9 5 lm) Pseudanabaena-type cyanobacterium with aerotopes. Nostoc colonies, colo-

nized by fungal-like hyphae (arrow in Fig. 7i) and thin cyanobacterial filaments, were also

apparent by CLSM (Fig. 7i).

The bottom layer of the pink stream mat was composed of a large diversity of forms,

with thick filaments, microcolonies and a matrix of fluorescent thin oscillatorians (Fig. 8a).

Among the thick cyanobacteria, there were filaments of Tolypothrix-type (Fig. 8b) with

100 µm

A

DC

B

10 µm

10 µm50 µm

Fig. 9 Bottom layer of pink mat in stream C1. a CSLM image of Nostoc filaments. b, c LTSEM images of
filamentous (b) and coccoid green algae (c). d SEM–BSE image of mineral particles with a low degree of
cohesion embedded in the filamentous cyanobacteria matrix
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8.4 9 8.9 lm cells and 7.7 9 6.4 lm heterocysts and Tychonema. As in the surface layer,

there were associated colonies of Gloeocapsa-type cyanoabacteria with non-coloured

sheaths (Fig. 8c), diatom frustules (Fig. 8d), violet Gloeocapsa cf. compacta in groups of 8

cells of 5.2 lm diameter (Fig. 8e), Nostoc colonies with tight 3.3 lm diameter spherical

cells, and colonies of Chroococcus-type organisms (2.9 lm; Fig. 8f), Aphanocapsa-type

(Fig. 8g) and Aphanothece-type cyanobacteria (Fig. 8h). The filamentous forms also in-

cluded a 3.3 lm diameter cf. Phormidium with a curved end and cf. Oscillatoria with

discoidal 5.4 9 1.45 lm cells. The thin filamentous cyanobacteria found at the surface

were also present at the bottom layer, including abundant populations of Pseudanabaena-

type (1.3 9 2.2; Fig. 8i), and a cf. Leptolyngbya of two cell sizes: 1.5 9 3.3 lm cells and

0.85 9 5.4 lm. Nostoc colonies and hormogonia (Fig. 9a), as well as cf. Gloeothece and

cf. Plectonema were also observed, along with filamentous (Fig. 9b) and coccoid (Fig. 9c)

green algae. Mineral particles were distributed among the cyanobacterial filaments and

colonies as visualized by SEM–BSE (Fig. 9d).

Black mat in stream C1

The dark coloured mat from wet but not immersed parts of the stream did not show a clear

stratified organization, but by SEM–BSE a thin surface layer with few mineral particles is

detected (noted by arrows in Fig. 10a). The mat was a hard, brittle crust formed by a

continuous layer of black microcolonies of different size (Fig. 10b) embedded in a mu-

cilaginous pink-orange matrix. The bottom of the mat was pale green and mucilaginous,

with numerous mineral particles (Fig. 10a) and dark green colonies.

The black surface colonies were composed of Gloeocapsa-type cyanobacteria, with

variable cell sizes, ranging from 4 to 9 lm diameter (Fig. 10c). There is a second colony

type containing larger cells (9 9 7.1 lm diameter) with a distinctive surface pattern

(Fig. 10d). Diatoms were abundant, but mostly as broken and empty frustules (Fig. 10e).

Filamentous green algae were also evident. The filamentous cyanobacteria in this mat

included a thin Tychonema with wide sheaths and many cellular inclusions (Fig. 10f);

Calothrix (8.2 lm wide at the heterocyst, which was 4.5 lm long) in a yellow lamellated

sheath (Fig. 10g); narrow filaments with long cells (1.3 9 7.5 lm); a wide (4.8 lm) sheath

of cf. Pseudanabaena with aerotopes at the ends of the cells; and Nostoc colonies with

4.4 lm spherical cells and 5.1 9 4.7 lm heterocysts. A colonial green alga with small

cells (2.7 lm diameter) was also present. The mucilaginous colonies at the bottom were

made of Nostoc (cells 5.15 9 4.7 lm; Fig. 11a), and within the colonies there were thin

(1 lm) branching fungal-like hyphae (arrows in Fig. 11a). The pink orange matrix was

formed by thin oscillatorians with yellow sheaths, along with cf. Tychonema (3 lm), and a

thin filamentous cyanobacterium, with cells 1.7 lm wide and 4.3–5.2 lm long, with

aerotopes and a black sheath 4.9 lm wide (Fig. 11b). Several other sizes of oscillatorians

were observed including of cell dimensions 1.0 9 5.7 and 1.3 9 5.3 lm (Fig. 11c).

Darkly pigmented Gloeocapsa and Nostoc colonies were also observed distributed

throughout the matrix by SEM–BSE (arrows in Fig. 11d) and along with filaments of

Tolypothrix-type, Calothrix and cf. Tychonema and a filamentous, branching green alga

(11 lm diameter). Mineral particles were common in the vicinity of the filamentous

mucilaginous cyanobacteria; in some areas there were loose aggregates of calcium car-

bonate (asterisk in Fig. 11d), while more heterogeneous mineral deposits harbouring di-

atoms remains and other mineral particles were found in other parts (Fig. 11e).
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Morphological diversity

Optical microscopy revealed 53 different cyanobacterial morphotypes (cellular arrange-

ment and size) in the three microbial mats investigated (Table 2). Assuming that the

different morphologies represented different taxa, Ward Hunt Lake mats and the C1 pink

mats were more diverse in morphologies than the black mat community in which only 17

A B

C D E

F G

100 µm

d

d

20 µm

50 µm 10 µm
50 µm

20 µm 20 µm

Fig. 10 Black mat in Stream C1. a General view of the upper part of the mat (SEM–BSE). Arrows note the
upper layer without mineral precipitates. b Optical image of black cyanobacteria microcolonies of different
size from the upper layer of the mat. c, d, optical images of Gloecapsa-type colonies. e SEM–BSE image of
diatom frustules (d). f, g Optical images of cf. Tychonema (f) and Calothrix (g) filaments
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morphologies were distinguished. The most diverse group of cyanobacteria was Pseu-

danabaena-type with 10 different morphologies. Both cf-Leptolyngbya and Nostoc showed

8 different morphologies each. Only one morphospecies was present in the three microbial

mats (cf. Pseudanabaena 1.1 9 4.6 lm) and 12 morphospecies distributed among the

different genera were present in two out of the three mats. The oscillatorians found in the

Ward Hunt and C1 pink mats (cf. Leptolyngbya, cf. Plectonema, cf. Phormidium and cf.

Oscillatoria) were conspicuously absent from the black stream mat, which was especially

rich and diverse in Pseudanabaena-type morphologies. Dichothrix was abundant in Ward

Hunt Lake, with some decaying filaments of this genus in the pink mat. Some

cyanobacterial genera were found predominantly in different habitats: Chroococcales

cyanobacteria were remarkably more diverse and abundant in the mats from flowing water

ecosystems, and Gloeocapsa-type was particularly diverse and abundant in this kind of

ecosystems. The Oscillatoriales cf. Tychonema and the Nostocales genus Tolypothrix were

also found only in mats from flowing water ecosystems, while Dichothrix was the most

representative cyanobacterium in lake’s microbial mats. Nostoc was well distributed in the

three mats, but with diverse morphologies.

A B C

D E

*

20 µm 50 µm

5 µm 5 µm200 µm

Fig. 11 Bottom layer of black mat in stream C1. a Optical image of Nostoc colony colonized by fungi
(arrows). b, c, Optical images of thin filamentous cyanobacterium with black sheath (b) and Pseudan-
abaena-type filament (c). d SEM–BSE image of dark pigmented colonies (arrows) in the proximity of
calcium carbonate particles (asterisk). e SEM–BSE image of heterogeneous mineral deposits
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Table 2 Cyanobacterial morphological diversity of the three microbial mats investigated

Taxon Ward Hunt Lake Pink stream mat Black stream mat

Pseudanabaena msp1 (1 9 5.75) X

Pseudanabaena msp2 (1 9 8.9) X

Pseudanabaena msp3 (1.1 9 4.6) X X X

Pseudanabaena msp4 (1.3 9 3.4) X

Pseudanabaena msp5 (1.3 9 1.6–2) X

Pseudanabaena msp6 (1.3 9 7.5) X

Pseudanabaena msp7 (1.3 9 5.3) X

Pseudanabaena msp8 (1.5 9 2.7) X

Pseudanabaena msp9 (1.7 9 4.3) (black sheath) X

Pseudanabaena msp10 (2 9 4.5) X

Leptolyngbya msp1 (0.7 9 3.1) X

Leptolyngbya msp2 (0.8 9 4.8) X

Leptolyngbya msp3 (0.85 9 3.5) X

Leptolyngbya msp4 (0.85 9 5.4) X

Leptolyngbya msp5 (1 9 1.3) X X

Leptolyngbya msp6 (1.2 9 2.9) X X

Leptolyngbya msp7 (1.43 9 1.9) X

Leptolyngbya msp8 (1.55 9 3.4) X

Phormidium msp1 (2 9 4.1) X

Phormidium msp2 (3.3 9 2.6) X

Phormidium msp3 (4.6 9 10) X

Phormidium msp4 (6.9 9 9.2) X

Oscillatoria msp1 (5.4 9 1.45) X

Oscillatoria msp2 (10.7 9 5.2) X

Plectonema msp1 (1.5 9 2.4) X X

Plectonema msp2 (1.9 9 3.2) X

Plectonema msp3 (2.1 9 2.2) X

Tychonema (3.27 9 3.1) X X

Aphanocapsa msp1 (2.5) X

Aphanocapsa msp2 (3.7) X

Aphanocapsa msp3 (5.4) X

Gloeocapsa msp1 (1.5–1.7) X

Gloeocapsa msp2 (2.6) X X

Gloeocapsa msp3 (4) X

Gloeocapsa msp4 (5.6 9 4.4) X X

Gloeocapsa msp5 (6.5 9 4.7) X X

Gloeocapsa msp6 (9) X

Gloeothece X

Chroococcus msp1 (7.5 9 5.9) X

Chroococcus msp2 (2.9) X

Aphanothece msp1 (1.1 9 2.8) (refringent dot) X

Aphanothece msp2 X

Dichothrix X
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Discussion

Microbial mats are abundantly distributed in lakes, ponds and streams in both the polar

regions (Vincent and Quesada 2012), but while they have received considerable attention

in the Antarctic (Vincent et al. 1993; De los Rı́os et al. 2004; Jungblut et al. 2005;

Fernández-Valiente et al. 2007; Jungblut et al. 2010; Peeters et al. 2012; Hawes et al. 2013;

Tytgat et al. 2014), much less is known about their composition and ecology in the Arctic

(Bonilla et al. 2005; Jungblut et al. 2010; Varin et al. 2010, 2012; Lionard et al. 2012).

Previous analyses of Arctic microbial mats have focused on their taxonomic and metabolic

diversity, and the present study provides new insights into their morphotype composition

and microstructural characteristics.

Our study identified 53 different cyanobacterial morphotypes in the three mats, in-

cluding 23 in the Ward Hunt Lake mats, which is similar to the number of OTUs (24)

obtained by molecular analyses of mats from the same shallow water site in Ward Hunt

Lake (Jungblut et al. 2010). We found much higher morphotype diversity (26) in High

Arctic stream mats than in the Jungblut et al. (2010) analysis of stream communities in the

same northern Ellesmere Island region (16 OTUs). Phenotypic plasticity is well known in

cyanobacteria, with the same organism having disparate morphologies under different

environmental conditions (Loza et al. 2013). Our morphotype analysis may have therefore

over-estimated diversity, although we were unable to differentiate coccoid forms such as

Synechococcus that are known to be genetically diverse, including in High Arctic plankton

communities (Van Hove et al. 2008). Thus, comparison between morphological and ge-

netic diversity should be considered with caution.

There were large differences in morphotype composition among the three mat types

sampled in the present study. In terms of genera, most mats described in the polar regions

contain similar dominants (Jungblut et al. 2010; Varin et al. 2012), however our obser-

vations show that different morphospecies from the same genera can be present under

different ecological conditions. The most striking differences were between the black mats

occurring in intermittent flows and dominated by Nostoc, versus the pink stream mats

Table 2 continued

Taxon Ward Hunt Lake Pink stream mat Black stream mat

Tolypothrix (8.4 9 8.9) X X

Calothrix X

Nostoc msp1 3.3 X

Nostoc msp2 (3.8 9 3.7) X X

Nostoc msp3 (4.2 9 2.6) X

Nostoc msp5 (4.4) X

Nostoc msp6 (5) X X

Nostoc msp7 (5.95 9 7.6) X X

Nostoc msp8 (6.5) X

Nostoc punctiforme X

Total taxa 23 26 17

The genera are given only by morphological similitude and does not have taxonomical value. The di-
mensions of the cells are in lm. ‘msp’ refers to morphospecies and may not have taxonomic value. When
only one dimension is provided the cells are isodiametric
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subject to continuous flowing water conditions in summer and dominated by oscillatorians.

These two communities are similar to the black and orange mats occupying similar habitats

in Antarctic desert streams (Vincent 1988) and it will be of great interest to compare these

two communities in detail by metagenomic analysis, because this low resolution mor-

phological study might not be adequate for community structure comparisons. Although

sequencing of the 16S rRNA genes of High Arctic, alpine and Antarctic oscillatorians has

indicated that genetically similar taxa are widely distributed throughout the cold biosphere,

there is also increasing evidence of endemism among Antarctic cyanobacteria (Comte et al.

2007; Vyverman et al. 2010), and a pole-to-pole comparison of this analogous pair of polar

desert stream mats could be especially informative.

The differences between the black and pink mats in the streams, and also relative to the

Ward Hunt Lake mat, suggest that the community structure and microstructure, respond to

environmental factors related to liquid water availability and habitat stability. These mats

showed some structural similarities, with a dense, pigmented superficial layer with higher

density of cells and a less cohesive bottom layer with higher accumulation of mineral

precipitates. However, there were large differences in the distribution of biological and

mineral components. The specific environmental factors of the different habitats, as well as

the interactions and activities that occur within the mat (Tolker-Nielsen and Molin 2000;

Glunk et al. 2011), likely determine this non-random microbial spatial distribution (Paerl

and Pinckney 1996). For instance, the presence of highly pigmented cyanobacterial

colonies in stream mats, could be related to the necessity of protection against direct

exposure to solar UV and PAR radiation due to the temporality of the flows. In contrast,

habitat stability may be a requisite for the Dichothrix film and its compact calcium car-

bonate precipitates in the Ward Hunt Lake mat.

Microbial components of cyanobacterial mats produce large amount of EPS generating

an extracellular matrix where biological and biogeochemical interactions take place (Paerl

and Pinckney 1996; Nichols et al. 2005). The EPS matrix also plays an important structural

role in these microbial consortia (Dupraz et al. 2009; De los Rı́os et al. 2014a). In Arctic

microbial mats, cyanobacteria are the primary source of EPS genes (Varin et al. 2012),

hence cyanobacterial EPS is the main structural component. This EPS matrix is not ho-

mogeneous, but rather exists as a series of microregions associated with the cyanobacterial

colonies or trichomes (Decho 2000; De los Rı́os et al. 2004). At the microscale level, the

EPS creates relatively spacious pores that are likely to result in microbial microhabitats

with their own distinctive chemical properties and assemblages of cells (Krembs et al.

2002). The mucilage also confers hydrophobicity to the mats that may aid their adhesion to

the benthic substrate and reduce their tendency to be detached from the bottom by melting

ice (Vézina and Vincent 1997). In addition, the EPS matrix play important roles in pH

buffering, cryoprotection and resistance to desiccation for the microorganisms contained

within (Vincent 1988; Krembs et al. 2002; De los Rı́os et al. 2014b; De Maayer et al.

2014).

The different microenvironments within the polymeric matrix may support certain

mineral transformations that are not chemically possible in the surrounding waters. Cal-

cium carbonate precipitates occurred within these mats, generally in the proximity of

cyanobacteria cells. They appeared to be more associated to EPS matrix rather than lo-

calized in or on the sheaths of cyanobacteria. Mineral precipitates identified as calcium

carbonate are commonly found in many microbial mats (De los Rı́os et al. 2004; Dupraz

et al. 2009; Braissant et al. 2009; Glunk et al. 2011), and may be induced by metabolic

activities (biologically-induced mineralization) or as result of environmentally driven

mineralization of the organic matrix (biologically-influenced mineralization) (Dupraz et al.
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2009). EPS contains negative charged functional groups that are known to chelate cations

from the water column such as Ca2? (Chan 2004; Braissant et al. 2007; Bontognali et al.

2010; Glunk et al. 2011). The degradation of EPS by heterotrophic metabolic reactions can

favor the Ca2? liberation and precipitation of calcium carbonate within the EPS matrix

(Dupraz et al. 2004; Glunk et al. 2011). The observation of such particles in Arctic mats

emphasizes the complex geomicrobiology of these highly structured microbial systems.
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