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INTRODUCTION

Viruses are an abundant component of aquatic
ecosystems (Suttle 2005), where they may regulate
host abundance and community structure, catalyze
evolution through the mediation of gene exchange,
and modify biogeochemical cycles (Wilhelm & Suttle
1999, Brussaard 2004, Rohwer & Thurber 2009, Gao
et al. 2016, Joli et al. 2017). At high northern lati-
tudes, viruses have been reported from a diversity of

aquatic habitats, including arctic and subarctic lakes
(de Carcer et al. 2016, Zeigler Allen et al. 2017), cry-
oconite holes on glaciers (Anesio et al. 2007), sea-ice
brines (Wells & Deming 2006), arctic marine sedi-
ments (Colangelo-Lillis et al. 2016) and the Arctic
Ocean (Guixa-Boixereu et al. 2002).

In some northern permafrost landscapes, global
warming has accelerated the formation of small lakes
formed by thermokarst: the thawing and collapse of
ice-rich soils (Pienitz et al. 2008, Vincent et al. 2017).
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ABSTRACT: Permafrost thaw ponds occur in high abundance across the northern landscape of
Canada and are sites of intense microbial activity, resulting in carbon dioxide and methane emis-
sions to the atmosphere. In this study, we focused on viruses as largely unstudied agents of top-
down control in these high-latitude microbial ecosystems. Specifically, we compared the diversity
of myovirus, chlorovirus and host microbial communities in an organic soil palsa valley pond and
a mineral soil lithalsa valley pond. These 2 subarctic permafrost landscapes are both common in
northern Qué bec, Canada. Sequence analysis of ribosomal small subunit RNA genes showed that
the community structure of bacteria and microbial eukaryotes differed significantly between the
2 ponds, which both differed from microbial communities in a rock-basin lake (whose formation
was not related to permafrost thawing and which we used as a reference pond) in the same region.
The viral assemblages included 439 OTUs in the uncultured Myoviridae category and 41 OTUs in
the family Phycodnaviridae. Phylogenetic analysis of the latter based on an amino acid sequence
alignment revealed a single large clade related to chloroviruses, consistent with the abundant
presence of chlorophytes in these waters. As there was for the bacterial and eukaryotic communi-
ties, there were also significant differences in the community structure of these viral groups
among the 3 ponds. These results suggest that host community composition is influenced by envi-
ronmental filtering, which in turn contributes to driving viral diversity across landscape types.
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These thermokarst waterbodies (thaw ponds) are
strong emitters of the greenhouse gases carbon diox-
ide and methane to the atmosphere (Laurion et al.
2010, Matveev et al. 2016). The net production of
these gases is controlled by the activity of microbes
(Crevecoeur et al. 2015, 2016), which are strongly
shaped by local environmental conditions (e.g.
Crevecoeur et al. 2015, Comte et al. 2016b, Przytul-
ska et al. 2016) but also subject to predation by graz-
ers and viruses. Despite the fact that thermokarst
ponds are among the most abundant freshwater eco-
systems in the circumpolar North (Olefeldt et al.
2016), the presence and diversity of the viral commu-
nity re mains largely unknown.

In the Hudson Bay region of subarctic Québec,
thermokarst ponds are subjected to extremes in light,
organic carbon availability, and oxygen. These ponds
are typically vertically stratified, with a high-light
oxygenated surface layer and a low-light hypoxic or
anoxic stratum of bottom water in the summer. Dur-
ing winter, when the ponds are ice-covered, light is
limited or absent and the water column becomes
completely anoxic (Deshpande et al. 2015). Two
types of permafrost landscapes are found in the
Québec subarctic: (1) palsa thaw ponds formed in
hummocks of peatland, and (2) lithalsa ponds that
form in hummocks of mineral-rich soils (Gurney
2001, Calmels et al. 2008). In addition, non-per-
mafrost lakes with rocky basins can be found in adja-
cent regions at similar latitudes. The type of land-
scape ultimately affects the quantity, nature and
availability of organic material in the pond (Watan-
abe et al. 2011, Kiikkila et al. 2014), and appears to
be a principal driver of microbial community compo-
sition (Comte et al. 2016b).

Viruses are intracellular obligate parasites and
therefore their dynamics are inextricably linked to
those of their hosts. The diversity of Bacteria (Comte
et al. 2016a,b), Archaea (Crevecoeur et al. 2015,
2016) and protists (Przytulska et al. 2016, 2017, Bégin
& Vincent 2017), the presumptive primary hosts of
the subarctic thermokarst viruses, has recently been
characterized in several Québec subarctic ponds.
Crevecoeur et al. (2015) reported that the largest dif-
ferences in bacterial diversity were between the 2
permafrost landscape types (palsa vs. lithalsa), and
Comte et al. (2016b) concluded that the composition
of these communities appears to be primarily deter-
mined by environmental filtering and dispersal limi-
tation. The species composition of archaeal commu-
nities was significantly different between palsa and
lithalsa ponds (Crevecoeur et al. 2017), similar to the
pattern exhibited by bacterial communities. Photo-

synthetic groups in these ponds include Cyanobac-
teria (across all size classes, from picoplankton to
colonial taxa), chlorophytes, cryptophytes and dino-
flagellates, as well as photosynthetic sulphur bacteria
(Przytulska et al. 2016). There was no clear differ-
ence in algal communities between palsa and lithalsa
waters, based on microscopy and morphotypes (Przy-
tulska et al. 2017).

The aim in the present study was to characterize 2
very different classes of viruses, chloroviruses and
myoviruses, which are globally distributed and infect
potential eukaryotic and prokaryotic host types that
have been reported in thaw lakes and ponds (Przy-
tulska et al. 2016, Crevecoeur et al. 2017). With one
exception (Brussaard 2004), chlorophytes (primary
endosymbiotic-origin oxygenic phototrophs) are pri-
marily in fected by viruses from a genus of large dou-
ble-stranded DNA viruses (Chlorovirus) within the
family Phycodnaviridae (Short 2012). The availability
of specific primers (Short et al. 2011) targeting a frag-
ment of the polymerase gene polB from this genus
has resulted in a large comparative database of polB-
containing viruses in freshwater, making polB a logi-
cal choice for this first study of the potential occur-
rences of chloroviruses in the subarctic. The approach
described by Short et al. (2011) yields amplification
products of both known and divergent virus phylo-
types. Bacteriophages are abundant, ubiquitous and
highly diverse in aquatic environments (Breit bart et al.
2007, Matteson et al. 2013). Myoviruses (a type of
bacteriophage) are widely reported from freshwater
environments, since primers targeting a conserved
structural gene (Matteson et al. 2011) are available
and have been widely used. For example, myo viruses
are present in ex treme, temperate and tropical envi-
ronments (Wilhelm & Matteson 2008). The lack of
universal viral primers means that the best available
primers for widely distributed groups will provide a
window into differences between lakes. We there-
fore tested these known primers for chloroviruses
and myoviruses to address whether: (1) thaw pond
viruses are divergent from known types, (2) there
were distinct viral signatures in ponds from different
landscape types (palsa vs. lithalsa vs. rock basin),
and (3) whether the viral communities be tween sur-
face and bottom layers of the ponds differ.

Our approach in this study was to analyze samples
of virus communities taken from the surface and
deeper waters of palsa, lithalsa and shallow rock-
basin ponds in subarctic Québec during the summer
ice-free period of maximum biological activity. Viral
communities were identified using high-throughput
sequencing (Illumina MiSeq) of the fragments of the
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gp23 structural gene of myoviruses and polB poly-
merase genes of chloroviruses. We also amplified the
V6−V8 region of the bacterial and archaeal 16S
rRNA gene and the V4 region of the eukaryotic 18S
rRNA gene to identify informative patterns between
viruses and their putative hosts.

MATERIALS AND METHODS

Study site and sampling

Samples were collected from August 27 to 30,
2015, from the 2 types of permafrost thaw ponds in
northern Québec (Nunavik, Canada) (Fig. 1). The
SAS2A site is a thaw pond in a palsa valley adjacent
to the Sasapimakwananisikw River (55° 13’ N, 77°
42’ W), located in the sporadic permafrost zone,
where the extent of permafrost ranges from 10 to
50%. The second site, BGR1, is a lithalsa pond
(Bhiry et al. 2011) located in the Bundesanstalt für
Geo wissen schaften und Rohstoffe valley (56° 37’ N,
76° 13’ W) near the Sheldrake River in a region of
discontinuous permafrost where the extent of per-
mafrost ranges from 50 to 90%. As a point of refer-
ence, we sampled Lake Olsha (55° 16’ N, 77° 44’ W),

a well-mixed shallow rock-basin lake near Whap-
magoostui- Kuujjuarapik, whose formation was not
re lated to permafrost thawing.

Triplicate samples were collected from oxygenated
depths (10 cm below the surface) referred to as sur-
face samples, and hypoxic/anoxic subsurface depths,
collectively referred to as ‘bottom samples’ at 0.5 m
(SAS2A), 3.5 m (BGR1) and 1.5 m (Olsha) (Table S1 in
the Supplement at www.int-res.com/ articles/ suppl/
a082p209_supp.pdf). Temperature, conductivity, dis -
solved oxygen (DO) and pH were measured with a
Hydrolab™ DS5X profiler. Samples were collected
from an inflatable boat from the deepest region of
each pond. Hydrolab data were not collected from
the BGR1 site, but seasonal depth data for this site
are available in Deshpande et al. (2015). Surface
water was sampled with acid-washed opaque bottles
(Nalgene™), while bottom samples were collected
with a horizontally mounted Van Dorn bottle (Wilco).
Water samples were transferred into acid-washed
Cubitainers™ that were stored in opaque bags and
transported back to the laboratory via helicopter for
processing. Dissolved organic carbon (DOC), total
suspended solids (TSS), total nitrogen (TN) and total
phosphorus (TP) were analyzed as in Laurion et al.
(2010).

211

Fig. 1. Location and photographs of the 3 sampling sites in the Cana-
dian subarctic (Nunavik, Québec), and the villages Whapmagoostui-
Kuujjuarapik and Umiujaq. BGR1: lithalsa pond, SAS2A: palsa pond,
and Olsha: Lake Olsha, a shallow rocky-basin waterbody. Map was 

created with Mapbox© (www.mapbox.com)

http://www.int-res.com/articles/suppl/a082p209_supp.pdf
http://www.int-res.com/articles/suppl/a082p209_supp.pdf
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Sample processing and molecular analysis

For each replicate, total viruses (i.e. samples that
were not pre-filtered and that likely included extra-
cellular viruses, intracellular viruses and viruses
adsorbed to particles), bacteria and eukaryotes were
collected by direct filtration of the water samples
through 0.02 µm pore size Anodisc aluminum oxide
(AAO) filters (Anotop 25, Whatman). The volumes of
sample filtered through the AAO filters ranged from
5 to 65 ml, 105 to 245 ml, and 53 to 115 ml for the sites
SAS2A, BGR1, and Olsha, respectively. These filters
were then stored at −80°C until extraction of the total
nucleic acids as described in Mueller et al. (2014).
After extraction, samples were treated with the
Power Clean Pro DNA Clean up kit (MoBio) which
removes potential PCR inhibitors.

We initially conducted PCR on a subset of samples
with a suite of primer sets (AVS, CHLV, mcp, T7mcp,
T4super and CPS) targeting a variety of molecular
marker genes from a diversity of groups of viruses
(see Adriaenssens & Cowan 2014 for a review). Based
on the results of these assays, we performed PCR on
all samples with the myovirus primers T4 superF1
and T4superR1 (Chow & Fuhrman 2012) and the
chlorovirus primers CHLVdF and CHLVdR (Short et
al. 2011) listed in our Table 1. Each reaction mixture
(final volume: 25 µl) contained 200 µM of each dNTP
(Bio Basics), 0.4 µM of each primer, 1× Expand buffer
containing MgCl2, 2 U of Expand High-fidelity
enzyme blend (Roche) and 3 µl of the purified DNA.
The following thermocycler conditions were used:
94°C for 120 s, followed by 40 cycles of denaturation
at 94°C for 30 s (CHLVd) or 15 s (T4super), annealing
at 52°C (CHLVd) or 54°C (T4super) for 30 s and
extension at 72°C for 60 s and then a final extension
step at 72°C for 7 min. PCR products were separated
on a 1% agarose gel, and DNA of the target size was
purified using Axygen magnetic beads (Corning Life
Sciences). In preparation for sequencing, Illumina
TruSeq adaptors and unique barcodes were added
with further rounds of PCR for each reaction. Sample

barcoded amplicons were subsequently pooled in
equimolar concentrations for sequencing on an Illu-
mina MiSeq at the Plateforme d’Analyses Génomiques
(IBIS, Université Laval, Québec, Canada). Sub-regions
of the bacterial 16S rRNA gene (V6−V8 region,
primers B969F and BA1406R) and eukaryotic 18S
rRNA gene (V4 region, primers E572F and E1009R)
were amplified using the primers described in Comeau
et al. (2011, 2016) with template from extracted AAO
filters. The raw Illumina sequences have been de -
posited in the NCBI Sequence Read Archive (SRA)
database with the following identifiers: SRP115531
(bacteria), SRP115532 (viruses), and SRP115533
(eukaryotes).

Bioinformatics and statistical analyses

Sequence reads were first analyzed using the
UPARSE quality-filtering pipeline to exclude chi -
meras and singletons (Edgar 2013) as described in
Comte et al. (2016a). Briefly, reads with low Q scores,
short reads (<300 nucleotides) and singletons, i.e.
reads occurring just once in the whole dataset, were
discarded. Chimeras were detected using UCHIME
(Edgar et al. 2011) as implemented in USEARCH
with SILVA 16S and 18S sequence databases (no
database available for viruses). The remaining reads
were clustered into operational taxonomic units
(OTUs) with >97% identity (16S rRNA), >98% iden-
tity (myovirus and 18S rRNA) and >99% identity
(chlorovirus). The virus % identity cut-offs were de -
termined from a phylogenetic analysis of classified
myo- and phycodnaviruses based on the approach
described by Culley & Steward (2007) for the classifi-
cation of environmental picorna-like virus sequences.
Bacterial and eukaryotic sequences were classified
based on an alignment of OTUs with the SILVA ref-
erence database (Pruesse et al. 2007) and a curated
reference database of arctic protists (Lovejoy et al.
2016), respectively. Sequences classified as fungi,
Streptophyta, metazoan, chloroplasts and Archaea
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Virus               Gene          Primer        Sequence (5’→3’)                                              Amplicon         Reference
                                                                                                                                        length (bp)

Myovirus         gp23       T4superF1     GAY HTI KSI GGI GTI CAR CCI ATG            400−500          Chow & Fuhrman (2012)
                                       T4superR1     GCI YKI ARR TCY TGI GCI ARY TC
Chlorovirus     polB         CHLVdF      CCW ATC GCA GCW CTM GAT TTT G       560−575          Short et al. (2011)
                                         CHLVdR      ATC TCV CCB GCV ARC CAC TT

Table 1. Sets of primers used for viral amplification. Degenerate nucleotides code: R = A, G; Y = C, T; M = A, C; K = G, T; S = G, T; 
W = A, T; H = A, C, T; B = C, G, T; V = A, C, G
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(248 OTUs in total) were removed from the dataset.
Viral OTUs were classified with DIAMOND (Buch -
fink et al. 2015) to identify the nearest match in the
indexed nrBLAST database. Results were visualized
in MEGAN6 (Huson et al. 2016).

Statistical analyses were executed using QIIME
(Caporaso et al. 2010) and RStudio v3.3.0 (Oksanen
et al. 2016) on a subset of the data (27 396 bacterial,
27 221 eukaryotic, and 28 511 myovirus sequences),
with the exception of chloroviruses, where all 39
sequences were used. Alpha-diversity metrics were
calculated using the QIIME command alpha_diver-
sity.py (Chao1, Shannon index). The assumptions of
normality and homoscedasticity for an ANOVA were
confirmed using a Shapiro-Wilk test. After, a 2-way
ANOVA and an a posteriori Tukey HSD test were
used to assess the significance of pond type or depth
on alpha-diversity. Venn diagrams were produced
using the VennDiagram package in R (Chen &
Boutros 2011) to visualize the percentages of unique
and shared OTUs among ponds. A UniFrac distance
matrix was generated (beta_diversity.py) after sub-
sampling the dataset and was used to build a jack-
knife phylogenetic tree. Heatmaps representing the
relative abundance of the most abundant OTUs
(defined as >1% of reads in the dataset) in each sam-
ple were produced to identify specific distribution
patterns. Principal coordinate analysis (PCoA) scatter
plots based on unweighted UniFrac distances were
generated to evaluate the environmental variables
potentially influencing diversity patterns among the
pond microbial communities.

To gain further insight into the taxonomy of the
thaw pond chlorovirus phylotypes, a maximum-
 likelihood (ML) reference tree (RAxML v8.2.9; Sta-
matakis 2014) was produced based on an alignment
(MUSCLE) (Edgar 2004) of representative amino acid
viral sequences from the family Phycodnaviridae.
Alignments were then transformed into distances
with RAxML v8.2.9 (Stamatakis 2014). The 39 chlo -
rovirus sequences were subsequently translated and
added to the RAxML phylogeny with the evolution-
ary placement algorithm (EPA; Berger et al. 2011).

RESULTS

Limnological conditions

The data from the palsa thaw pond (Site SAS2A)
were consistent with previous studies from the
region and indicated that the thaw ponds are gener-
ally highly stratified with warmer, oxygenated water

at the surface and cooler, anoxic, and more ion-rich
water at the bottom (see Table S1). Conversely, the
shallow rock-basin lake (Site Olsha) water column
was well-mixed, oxygenated from surface to bottom,
and had relatively low conductivity (Deshpande et al.
2015). Site SAS2A also had relatively lower pH val-
ues and higher DOC, TP and TN concentrations,
while Site BGR1 had higher concentrations of TSS
and bottom-water chl a (Deshpande et al. 2015, Przy-
tulska et al. 2016).

Cellular communities

Proteobacteria followed by Actinobacteria, Bac-
teroidetes and Verrucomicrobia were the taxonomic
groups with the highest proportion of OTUs in all 3
ponds (Fig. 2A). Within the phylum Proteobacteria,
the Betaproteobacteria comprised between approxi-
mately 60 and 90% of OTUs. Members of the genus
Polynucleobacter (Betaproteobacteria) had the highest
relative abundance at sites SAS2A and Olsha, while
Actinobacteria were proportionally most abundant in
BGR1. Cyanobacteria were detected at all 3 sites but
had greater relative abundance in Olsha (10%) than
in the thaw ponds (<2%).

At all 3 sampling sites, the major groups of eukary-
otes with the highest relative abundances were Cilio-
phora, Chlorophyta, Chrysophyceae and Crypto mo -
na dales (Fig. 2B). Chlorophytes tended to have higher
relative abundances in bottom waters, while the sur-
face waters had high relative abundances of dinofla-
gellates, cryptomonads and ciliates in SAS2A, BGR1
and Olsha, respectively. In general, autotrophic pro-
tists represented a high percentage of the total com-
munity, ranging from 42% in Olsha to 79% in
SAS2A.

The PCoA based on unweighted UniFrac distances
(Fig. 3) showed distinct clustering of bacterial and
eukaryotic communities by pond type, but no evident
clustering by depth. SAS2A bacterial communities
were distinct from BGR1 and Olsha along the x-axis
(44% of the variance explained, Fig. 3A). Although
BGR1 and Olsha communities overlapped along the
x-axis, these 2 communities were separate along the
y-axis (28% of the variance explained, Fig. 3A).
Olsha eukaryote communities were distinct from the
2 thaw ponds both along the x-axis (36% of the vari-
ance explained) and y-axis (32% of the variance
explained, Fig. 3B).

UniFrac UPGMA trees based on the top 1% (Fig. 4)
showed well-supported patterns in OTU distribution
by pond type, but not by depth, with the exception
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of BGR1 bacterial and eukaryotic communities
(Fig. 4A,B). The dominant bacterial phylotype was a
member of the Puniceicoccaceae and the dominant
eukaryotic phylotype was a member of the Chloro-
phyceae.

Bacterial diversity patterns were generally consis-
tent with those of the PCoA (Fig. 5). The Shannon
indices from all 3 pond types were significantly dif-
ferent (ANOVA, p < 0.05), while surface and bottom
indices were not. Mean values and ranges for the 2
indices, surface and bottom, for the 3 sites are listed
in Table S2 in the Supplement.

Eukaryotic community Shannon indices were sig-
nificantly different among all 3 sites (ANOVA, p <
0.05). Surface and bottom indices from BGR1 were
significantly different; however, the indices from Olsha
and SAS2A were not. Eukaryotic richness was high-
est in the bottom waters of Lake Olsha (462 ± 52
mean ± SD) and lowest in the bottom waters of BGR1
(260 ± 31). Mean values and ranges for the 2 indices
are listed in Table S2.

Venn diagrams (Fig. 6) showed that 22.2% of bac-
terial OTUs and 12.9% of eukaryotic OTUs were
shared among the 3 sites. The highest percentage of
unique OTUs for bacteria (32.1%) and eukaryotes
(25.6%) was in site SAS2A and the highest percent-
age of shared OTUs for bacteria (40.8%) and for
eukaryotes (23.1%) was between sites Olsha and
SAS2A. A Venn diagram of chlorophytes (Fig. 7) re -
vealed that 21.4% of OTUs were shared among the 3
sites and that the highest percentage of OTUs were
shared between sites BGR1 and Olsha (16.8%).

Viral communities

Classification based on DIAMOND revealed that
the majority of OTUs matched with sequences in the
uncultured Myoviridae category (439 out of 872 total
OTUs), while fewer OTUs matched with the myo -
viruses Enterobacteria phage T4 and Caulobacter
phage Cr30 (Fig. 8A). A single phylotype was identi-
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fied as a cyanophage (Synechococcus phage S-
CRM01), while a large number (221) of the phylotypes
were binned in the general category of ‘Viruses’.

The family Phycodnaviridae was matched by 41
OTUs (Fig. 8B), with 1 assigned to the genus Chlo -
ro virus. To further resolve the taxonomy of the chlo -
ro virus phylotypes, we produced an ML phylogeny
analysis based on an amino acid sequence align-
ment that resulted in a single large clade with a
bootstrap value of 100 that contained all of the envi-
ronmental OTUs from the present study, sequences
amplified with the same primer set from Lake
Ontario (Short et al. 2011), and from the chlorovirus

isolate Acanthocystis turfacea Chlorella virus 1
(Fig. 9). This clade in turn formed a well-supported
group (bootstrap value of 100) with the chloro -
viruses Paramecium bursaria Chlorella virus 1 and
Paramecium bursaria Chlorella virus NY2A. Estab-
lished genera of phycodnaviruses with multiple rep-
resentatives were resolved into monophyletic clus-
ters with bootstrap values of 100.

The PCoA based on unweighted UniFrac distances
showed distinct clustering of myovirus and chlorovirus
communities by pond (with 1 exception) but not by
depth (Fig. 3C,D). Myovirus communities at all 3 sites
were separate along the x-axis (42% of the variance
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explained, Fig. 3C). BGR1 and Olsha
myo virus communities overlapped along
the y-axis (38% of the variance ex-
plained), while SAS2A was distinct.
The chlorovirus thaw pond communi-
ties se parated along the x-axis (57% of
the variance ex plained) but overlapped
along the y-axis (19% of the variance
explained), while the Olsha community
showed no clear pattern (Fig. 3D).

The same trends exhibited by the
PCoA were evident in un weighted Uni -
Frac UPGMA trees where myovi ruses
formed well-supported clades (boot-
strap values = 100) by site (Fig. 4C) but
did not cluster by depth. The results
were less clear for the chloroviruses
(Fig. 4D) and re flected the pattern of
the PCoA. While SAS2A and BGR1
chlorovirus communities were distinct,
Olsha and one SAS2A surface sample
appeared to form a group, albeit poorly
supported.

A heatmap (Fig. 4C,D) showed re -
gional patterns in myovirus and chlo ro -
virus OTU distribution, and pinpointed
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particular phylotypes in individual samples. For
example, one replicate of SAS2A from the bottom
consisted mainly of the myovirus OTU 126 that was
practically absent in the other SAS2A samples. Simi-
larly, the chlorovirus OTU 239 was dominant in one
of the Olsha bottom replicates but was not detected
elsewhere.

The ANOVA showed significant differences be -
tween the myovirus Shannon indices among all pond
types (p < 0.05) (Fig. 5), while surface and bottom my-
ovirus indices were not significantly different (see
Table S2). While the SAS2A vs. BGR1 (thaw ponds)
and Olsha vs. BGR1 chlorovirus indices were signifi-
cantly different, we did not detect significant differ-
ences be tween SAS2A and Olsha. Although surface
and bottom indices of Olsha chlorovirus were signifi-
cantly different, we found no difference in diversity in
the thaw pond surface and bottom samples. Myovirus
richness ranged from 307 ± 86 phylotypes in the bot-
tom of the SAS2A pond to 193 ± 17 phylotypes in the
bottom of the BGR1 pond, while chlorovirus richness
was highest in the BGR1 bottom sample (26 ± 1) and
lowest in the Olsha bottom sample (7 ± 6).

Venn diagrams (Fig. 6) indicated that chloroviruses
shared the highest percentage of OTUs (34.1%)
among the 3 sites, while myovirus shared the least
(5.7%). The highest percentage of unique OTUs for
chloroviruses (19.5%) and myoviruses (37.6%) was
in the SAS2A pond, while the highest percentage of
chlorovirus (48.7%) and myovirus (14.2%) OTUs was
shared between the 2 thermokarst ponds (BGR1 and
SAS2A).
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DISCUSSION

Consistent with observations from many studies
elsewhere that viruses are an integral part of aquatic
microbial ecosystems, we found myoviruses and chlo -
roviruses in the water column of all 3 sites in this
study. Viruses have been detected in a wide variety of
cold-water environments, including polar lakes and
seas (Lopez-Bueno et al. 2009, Chenard et al. 2015),
and their abundance in thaw ponds was therefore to
be expected. The presence of viral nucleic acids indi-
cates that viral replication is taking place, which in
turn suggests that viruses are active and likely influ-
ence the microbial ecology of northern thaw ponds.

We found that the 2 thermokarst ponds from dif-
ferent landscapes harboured distinct myovirus and

chlorovirus communities and that landscape type is
likely among the factors that drive these differences.
Viral production and viral decay determine viral
com munity composition and these processes are
affected by biotic factors such as host metabolism
and community composition, direct predation, and
ex tracellular enzymatic activity (Chow & Suttle
2015), as well as by abiotic factors such as exposure
to UV-B radiation and the concentration of charged
particles (Suttle & Feng 1992, Suttle & Chan 1994).
Our analyses were based on replicate samples
within each waterbody but were limited to a single
representative of each waterbody type. In terms of
limnological and microbial characteristics, earlier
work reported much higher variability between the
rock-basin, palsa and lithalsa pond types compared
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to within them (Crevecoeur et al. 2015, Comte et al.
2016b). Further study is re quired from more ponds
within each valley to resolve the role of landscape
type in the differences in viral diversity observed in
the present study.

DOC concentration may be the primary driver of
viral host community structure and thereby viral
diversity. Palsa ponds, such as our site SAS2A, are
rich in biologically available DOC (Laurion & Mlade-
nov 2013), which has substantial effects on the struc-
ture and function of aquatic microbial communities
(Judd et al. 2006, Kritzberg et al. 2006). In concor-
dance with our findings, studies of bacterial biogeog-
raphy that included the same sites sampled in this
study (Comte et al. 2016b) concluded that DOC was
among the principal determinants of community
composition, and that bacterial diversity in palsa and
lithalsa ponds differed significantly. Crevecoeur et
al. (2016) also found a significant difference between
SAS2A and BGR1 archaeal community diversity,
although only communities from bottom waters were
targeted.

The diversity patterns of chlorovirus and putative
hosts, which included all eukaryotes, were less syn-
chronized than myoviruses and bacteria. This result
is consistent with our use of the universal 18S primers
capturing a large range of eukaryotes (including
photosynthetic and non-photosynthetic organisms),
compared to the chlorovirus primers that target a
much more limited set of viruses, specifically phy-
codnaviruses that infect chlorophytes. This was also
evident in Venn diagram patterns, with greater
diversity of the eukaryotic community compared to
chloroviruses. By limiting our study to chlorovirus
primers, the overlap among the 3 pond communities
could be an artifact of the small fraction of chloro -
viruses within the total virus community that infects
eukaryotes. The Venn diagram based on only chloro-
phyte OTUs (Fig. 7) showed approximately twice the
number of shared sequences among all pond types
(21%) compared to the proportion of total eukaryotes
(12%). It therefore seems likely that changes in
chlorovirus diversity follow changes in chlorophyte
diversity among the ponds. It should also be noted
that the primer-based approach used to characterize
microbial diversity in this study is subject to bias. For
example, Needham et al. (2017) found that the
T4super primer set tended to preferentially amplify
smaller g23 products and D’Amore et al. (2016)
demonstrated that the library preparation method
and the choice of sequencing platforms and primers
influence the observed bacterial community compo-
sition based on 16S universal primers.

Another factor to consider is that the criteria used
to define viral OTUs will affect the assessment of
diversity. In our study, we chose a cut-off of 99%
based on an alignment of the regions of the DNA poly -
merase amplified by the chlorovirus primers based
on species in the family Phycodnaviridae. However,
as was evident in the chlorovirus phylogeny (Fig. 9),
all the thaw pond virotypes were closely related (al -
though considered different OTUs according to our
criteria). It remains unknown as to whether these
OTUs were genetic variants of the same viral strain,
or if they represent different strains of viruses with
different host ranges, which would imply that the dif-
ferences in community diversity were linked with
function.

We expected to find different viral communities in
thaw pond surface and bottom waters, but our analy-
ses indicated that this was generally not the case. In
contrast to Olsha, a rock-basin lake with a well-
mixed water column, the thaw ponds were character-
ized by a stable, vertical physico-chemical gradient
(Laurion et al. 2010) in the summer. Previous work
has demonstrated that warm, oxygenated surface
waters overlying cold, hypoxic/anoxic, bottom waters
favour different microbial populations in the differ-
ent depths (Rossi et al. 2013). Contrary to this expec-
tation, there was substantial overlap in communities
between surface and bottom layers (Fig. 5). One pos-
sible explanation for this result is that there was
recent mixing of surface and bottom waters in the
ponds, a hypothesis supported by the fact that aero-
bic bacterial taxa (e.g. Comamonadaceae, Polynucle-
obacter) were detected in bottom samples, suggest-
ing transfer by mixing or sedimentation.

The classification of viruses based on environmen-
tal sequences is challenging because of the paucity
of relevant genomes in the reference database and
the mutability and mosaicism of viral genomes. The
classification of thaw pond OTUs from BLAST-based
analyses was, with a few exceptions, limited to the
taxonomic level of family. For example, 97% of the
myovirus OTUs could only be classified in the group
‘uncultured Myoviridae’, providing no real insight
into the potential hosts of these viruses, albeit strongly
suggesting that thaw pond myoviruses were diver-
gent from other myoviruses. Of the 3% of OTUs that
were classified to the species level, most of them
were grouped with myoviruses that infect humans or
marine organisms that are unlikely to be present in a
freshwater thaw pond. Similar to the myoviruses,
most thaw pond chlorovirus OTUs (93%) could not
be classified past the family level and were catego-
rized as unknown members of the family Phycod-
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naviridae. In an effort to gain a better taxonomic res-
olution, we constructed phylogenetic trees with thaw
pond chlorovirus OTUs and representative genomes
from the genera of the family Phycodnaviridae. All of
the OTUs from this study clustered most closely with
the chlorovirus species Acanthocystis turfacea Chlo -
rella virus 1, a virus that infects a chlorophyte sym-
biont of a heliozoan. However, it is likely that the
hosts of these viruses are the abundant free-living
chlorophytes that comprised a large percentage of
the total eukaryotes.

In conclusion, this first viral study of thaw ponds, a
major ecosystem type across the northern landscape
of Canada, showed that myo- and chlorovirioplank-
ton were present in both palsa and lithalsa waters, as
well as in a shallow rock-basin reference lake in sub-
arctic Québec. Although the thaw pond viral OTUs
were re lated to viruses in the families Myoviridae and
Phyco dnaviridae, they were divergent from known
viruses within these groups. There was a pronounced
difference in viral community composition between
different thaw ponds, raising the possibility that per-
mafrost landscape type selects the bacterial and
eukaryotic host communities, which in turn drives
viral structure in these microbial ecosystems. Addi-
tional ponds from each landscape type will be
needed to further evaluate this conjecture.
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